Increased Zinc and Manganese in Parallel with Neurodegeneration, Synaptic Protein Changes and Activation of Akt/GSK3 Signaling in Ovine CLN6 Neuronal Ceroid Lipofuscinosis

نویسندگان

  • Katja M. Kanninen
  • Alexandra Grubman
  • Jodi Meyerowitz
  • Clare Duncan
  • Jiang-Li Tan
  • Sarah J. Parker
  • Peter J. Crouch
  • Brett M. Paterson
  • James L. Hickey
  • Paul S. Donnelly
  • Irene Volitakis
  • Imke Tammen
  • David N. Palmer
  • Anthony R. White
چکیده

Mutations in the CLN6 gene cause a variant late infantile form of neuronal ceroid lipofuscinosis (NCL; Batten disease). CLN6 loss leads to disease clinically characterized by vision impairment, motor and cognitive dysfunction, and seizures. Accumulating evidence suggests that alterations in metal homeostasis and cellular signaling pathways are implicated in several neurodegenerative and developmental disorders, yet little is known about their role in the NCLs. To explore the disease mechanisms of CLN6 NCL, metal concentrations and expression of proteins implicated in cellular signaling pathways were assessed in brain tissue from South Hampshire and Merino CLN6 sheep. Analyses revealed increased zinc and manganese concentrations in affected sheep brain in those regions where neuroinflammation and neurodegeneration first occur. Synaptic proteins, the metal-binding protein metallothionein, and the Akt/GSK3 and ERK/MAPK cellular signaling pathways were also altered. These results demonstrate that altered metal concentrations, synaptic protein changes, and aberrant modulation of cellular signaling pathways are characteristic features in the CLN6 ovine form of NCL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered biometal homeostasis is associated with CLN6 mRNA loss in mouse neuronal ceroid lipofuscinosis

Neuronal ceroid lipofuscinoses, the most common fatal childhood neurodegenerative illnesses, share many features with more prevalent neurodegenerative diseases. Neuronal ceroid lipofuscinoses are caused by mutations in CLN genes. CLN6 encodes a transmembrane endoplasmic reticulum protein with no known function. We characterized the behavioural phenotype of spontaneous mutant mice modeling CLN6 ...

متن کامل

Enhanced expression of manganese-dependent superoxide dismutase in human and sheep CLN6 tissues.

Neuronal ceroid lipofuscinosis type 6 and its sheep model (OCL6) are lysosomal storage disorders caused by mutations in the CLN6 gene product of unknown function. It has been proposed that mitochondrial dysfunction, including defects in mitochondrial protein degradation, organelle enlargement and functional changes in oxidative phosphorylation, may contribute to the disease pathology. To furthe...

متن کامل

Disruption of the Autophagy-Lysosome Pathway Is Involved in Neuropathology of the nclf Mouse Model of Neuronal Ceroid Lipofuscinosis

Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the ...

متن کامل

Rapid and Progressive Regional Brain Atrophy in CLN6 Batten Disease Affected Sheep Measured with Longitudinal Magnetic Resonance Imaging

Variant late-infantile Batten disease is a neuronal ceroid lipofuscinosis caused by mutations in CLN6. It is a recessive genetic lysosomal storage disease characterised by progressive neurodegeneration. It starts insidiously and leads to blindness, epilepsy and dementia in affected children. Sheep that are homozygous for a natural mutation in CLN6 have an ovine form of Batten disease Here, we u...

متن کامل

Pharmacological evidence for lithium-induced neuroprotection against methamphetamine-induced neurodegeneration via Akt-1/GSK3 and CREB-BDNF signaling pathways

Objective(s): Neurodegeneration is an outcome of Methamphetamine (METH) abuse. Studies have emphasized on the neuroprotective properties of lithium. The current study is designed towards evaluating the role of Akt-1/GSK3 and CREB-BDNF signaling pathways in mediating lithium neuroprotection against METH-induced neurodegeneration in rats. Materials and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013